Problem hidden
|This problem was hidden by Editorial Board member probably because it has incorrect language|version or invalid test data, or description of the problem is not clear.|

VOSTREE2 - VOSTREE2




Cho một đồ thị cây có N đỉnh N-1 cạnh, mỗi đỉnh của cây có một giá trị là Ai, Người ta tiến hành thao tác sau:

Bước 1: Chọn một cây con có gốc là đỉnh 1, gọi là cây con T, sao cho khoảng cách từ các đỉnh của cây con T tới đỉnh 1 có thể tạo thành một dãy tăng nghiêm ngặt.

Bước 2: Tiến hành tăng hoặc giảm giá trị tất cả các đỉnh của cây con T đã chọn ở bước 1 đi 1 đơn vị.

Nhiệm vụ của bạn tính số thao tác nhỏ nhất để tất cả các đỉnh của cây đều có giá trị bằng 0.

Input

Dòng 1: Một số nguyên T, số test đề bài (1≤T≤10).

T bộ test tiếp theo có dạng:

Dòng 1: Số nguyên N, số đỉnh của cây (1≤N≤105).

N-1 dòng tiếp theo, mỗi dòng gồm hai số nguyên u và v cho biết cạnh nối giữa hai đỉnh u và v (1≤u,v≤N).

Dòng tiếp theo: Gồm  N số nguyên A1 ... AN (1≤|Ai|≤105).

Output

Gồm T dòng, mỗi dòng một số nguyên là số thao tác ít nhất ứng với bộ test đó

Example

Input:

1

3

1 2

1 3

-1 -1 -1

Output: 3

Giải thích test:

Thao tác 1: Chọn cây con T gồm hai đỉnh 1 và 2, tăng giá trị tất cả các đỉnh lên 1, mảng A=[0,0,-1].

Thao tác 2: Chọn cây con T gồm hai đỉnh 1 và 3, tăng giá trị tất cả các đỉnh lên 1, mảng A=[1,0,0].

Thao tác 3, chọn cây con T gồm đỉnh 1, giảm giá trị các đỉnh đi 1, mảng A=[0,0,0].

Bạn không thể chọn cây con T gồm 3 đỉnh 1, 2, 3 bởi vì khi đó khoảng cách từ các đỉnh tới 1 sẽ lần lượt là 0,1,1

->không tạo thành một dãy tăng.

Thông tin về tree cho các bạn chưa biết: http://en.wikipedia.org/wiki/Tree_(data_structure)


Được gửi lên bởi:Thương
Ngày:2014-10-22
Thời gian chạy:1s
Giới hạn mã nguồn:50000B
Memory limit:1536MB
Cluster: Cube (Intel G860)
Ngôn ngữ cho phép:Tất cả ngoại trừ: ASM64 GOSU PERL6 PYPY RUST SED
Nguồn bài:VOS Round 30 - Nguyễn Khánh Việt

hide comments
2018-08-13 02:54:51
sol+code : https://bit.ly/1OFywpr
2018-08-13 02:53:55
thật ra bài này khó vãi L
2014-11-09 03:10:18 Tây Cuồng
Bài này thật ra không khó :((
© Spoj.com. All Rights Reserved. Spoj uses Sphere Engine™ © by Sphere Research Labs.