Space Shuttle Experiments

Hiện tại, bài tập này đã có trên online judge chính thức của VNOI, bạn có thể truy cập ở đây: https://oj.vnoi.info/problem/spse

Professor Spook is consulting for NASA, which is planning a series of space shuttle flights and must decide which commercial experiments to perform and which instruments to have on board each flight. For each flight NASA considers a set $\mathbf{E}=\left\{\mathbf{E}_{\mathbf{1}}, \mathbf{E}_{\mathbf{2}}, \ldots, \mathbf{E}_{\mathbf{m}}\right\}$ of instruments experiments and the commercial sponsor of $\mathbf{E}_{\mathbf{j}}$ has agreed to pay NASA $\mathbf{p}_{\mathbf{j}}$ dollars for the results of the experiments.

The experiments use a set $\mathbf{I}=\left\{\mathbf{I}_{\mathbf{1}}, \mathbf{I}_{\mathbf{2}}, \ldots, \mathbf{I}_{\mathbf{n}}\right\}$ of instruments; each experiment $\mathbf{E}_{\mathbf{j}}$ requires some of the instruments from the set. The cost of carrying instruments $\mathbf{I}_{\mathbf{k}}$ is $\mathbf{c}_{\mathbf{k}}$ dollars. And an instrument can be used for multiple experiments.

The professor's job is to determine which experiments to perform and which instruments to carry for a given flight in order to maximize the net revenue, which is the total income from the experiments performed minus the total cost of the instruments carried. Since he is not a programmer, he asked your help.

Input

Input starts with an integer $\mathbf{T}(\mathbf{\leq 1 0 0})$, denoting the number of test cases.
Each case starts with a line containing two integers $\mathbf{m}(1 \leq m \leq 1000)$ and $\mathbf{n}(\mathbf{1} \leq \mathbf{n} \leq$ 1000), where \mathbf{m} denotes the number of experiments and \mathbf{n} denotes the number of instruments. The next line contains m space separated integers, where the $j^{\text {th }}$ integer denotes the commercial sponsor of $\mathbf{E}_{\mathbf{j}}$ paying NASA $\left.\mathbf{p}_{\mathbf{j}} \mathbf{(1 \leq} \mathbf{p}_{\mathbf{j}} \leq \mathbf{1 0 0 0 0}\right)$ dollars for the result of the experiment. The next line contains \mathbf{n} space separated integers, where the $\mathbf{k}^{\text {th }}$ integer denotes the cost of carrying the $\mathbf{k}^{\text {th }}$ instrument, $\mathbf{c}_{\mathbf{k}}\left(\mathbf{1 \leq} \mathbf{c}_{\mathbf{k}} \leq \mathbf{1 0 0 0 0}\right)$. Each of the next \mathbf{m} lines contains an integer $\mathrm{q}_{\mathrm{i}}\left(1 \leq \mathrm{q}_{\mathrm{i}} \leq\right.$ \mathbf{n}) followed by $\mathbf{q}_{\mathbf{i}}$ distinct integers each between $\mathbf{1}$ and \mathbf{n}, separated by spaces. These $\mathbf{q}_{\mathbf{i}}$ integers denote the required instruments for the $\mathbf{i}^{\text {th }}$ experiment.

Output

For each case, print the case number and the maximum revenue NASA can make using the experiments.

Sample Input	Output for Sample Input
2	Case $1: 0$
11	case $2: 13$
10	

20	
11	
3	5
20	3040
1230450	
3	23
3234	
15	

