Recursive Sequence

Sequence $\left(a_{i}\right)$ of natural numbers is defined as follows:

$$
\begin{aligned}
& a_{i}=b_{i}(\text { for } i<=k) \\
& a_{i}=c_{1} a_{i-1}+c_{2} a_{i-2}+\ldots+c_{k} a_{i-k}(\text { for } i>k)
\end{aligned}
$$

where b_{j} and c_{j} are given natural numbers for $1<=j<=k$. Your task is to compute a_{n} for given n and output it modulo 10^{9}.

Input

On the first row there is the number C of test cases (equal to about 1000).
Each test contains four lines:
k - number of elements of (c) and (b) ($1<=k<=10$)
$b_{1}, \ldots, b_{k}-k$ natural numbers where $0<=b_{j}<=10^{9}$ separated by spaces
$c_{1}, \ldots, c_{k}-k$ natural numbers where $0<=c_{j}<=10^{9}$ separated by spaces
n - natural number ($1<=n<=10^{9}$)

Output

Exactly C lines, one for each test case: a_{n} modulo 10^{9}

Example

Input:

3
3

Output:

8
714
257599514

