Number game

Let us play a number manipulation game where the players are given a sequence of distinct positive integers a[1], a[2], ..., a[n] and a positive integer k. Starting with a[1], the players need to perform at most k moves in order to obtain an. At every move, ai can be changed to aj ($i \neq j$) if (6 x a[i] + a[j]) is a prime number.

Given a sequence a[1], a[2], ..., a[n] and two positive integers k and M, let us denote W to be the number of ways to obtain a[n] from a[1] using at most k moves. Your task is to compute the remainder of W when divided by M.

Input

The input file consists of several data sets. The first line of the input file contains the number of data sets which is a positive integer and is not greater than 20. The following lines describe the data sets.

Each data set consists of two lines where the first line contains 3 space-separated integers n, k, M ($n \le 20$; k,M $\le 10^{12}$). The second line contains n space-separated positive integers a[1], a[2], ..., a[n] (a[i] $\le 10^{9}$).

Output

For each data set, write on one line the required remainder.

Example

Input:

1

3 2 100

157

Output:

2