Number game

Let us play a number manipulation game where the players are given a sequence of distinct positive integers $a[1], a[2], \ldots, a[n]$ and a positive integer k. Starting with $a[1]$, the players need to perform at most k moves in order to obtain an. At every move, ai can be changed to aj ($\mathrm{i} \neq \mathrm{j}$) if (6 x $a[i]+a[j]$) is a prime number.

Given a sequence $a[1], a[2], \ldots, a[n]$ and two positive integers k and M, let us denote W to be the number of ways to obtain $\mathrm{a}[\mathrm{n}]$ from $\mathrm{a}[1]$ using at most k moves. Your task is to compute the remainder of W when divided by M.

Input

The input file consists of several data sets. The first line of the input file contains the number of data sets which is a positive integer and is not greater than 20. The following lines describe the data sets.

Each data set consists of two lines where the first line contains 3 space-separated integers n, k, $M\left(n \leq 20 ; k, M \leq 10^{\wedge} 12\right)$. The second line contains n space-separated positive integers $a[1], a[2]$, $\ldots, a[n]\left(a[i] \leq 10^{\wedge} 9\right)$.

Output

For each data set, write on one line the required remainder.

Example

Input:
1
32100
157
Output:
2

