Strongly connected components

Given a digraph G = (V, E), print the strongly connected component graph $G_{SCC} = (V_{SCC}, E_{SCC})$.

Labeling of vertices in V_{SCC} should be done as follows:

For vertex v in V_{SCC} , let us define order-id(v) = min{label(v_i) | v_i is part of v in V_{SCC} }

Vertex v in V_{SCC} with lowest value of order-id(v) gets label 0, vertex with second lowest value gets label 1 and so on.

Input

The graph is given in the adjacency list format. The first number is n, the number of vertices, which will be an integer ≥ 1 . The vertex set is assumed to be V = {0, 1, ..., n – 1}. Following this number n, there are n lines, where, the ith line (1st, 2nd ...) corresponds to the adjacency list of node numbered i-1 (0,1,...). Each adjacency list is a sequence of vertex ids (between 0 and n – 1) and ends with -1.

Output

Print the number of strongly connected components.

From the next line , print the sorted adjacency list of each SCC appended with -1

Constraints

2 <= n <= 1000

Tlme - 1s

Example 1:

Input:

9 1 -1 4 3 2 -1 5 -1 -1 0 -1 6 -1 7 -1 8 -1 2 -1

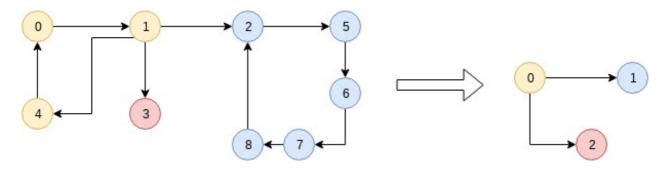
Output:

```
3
1 2 -1
-1
-1
```

Explanation:

In the above example, there will be $3 \text{ SCCs} : \{0, 1, 4\}, \{2, 5, 6, 7, 8\}$ and $\{3\}$.

SCCs of $\{0, 1, 4\}$, $\{2, 5, 6, 7, 8\}$, $\{3\}$ have order-ids 0, 2 and 3 respectively. Therefore, $\{0, 1, 4\}$ gets label 0, $\{2, 5, 6, 7, 8\}$ gets label 1 and $\{3\}$ gets label 2. There are two edges (0, 1) and (0, 2) in the condensed graph G_{SCC} . Verify the same in the following diagram:



Example 2:

Input:

10 1 -1 9 -1 4 5 7 9 -1 4 -1 -1 4 -1 1 8 -1 -1 -1 1 -1

Output:

9 1 -1 1 4 5 7 -1 4 -1 -1 4 -1 1 8 -1 -1 -1